Skip to main content

Drawing the bib outline

With our neck opening in place, let us draw the basic outline of our bib.

function draftBib({
Path,
Point,
paths,
points,
measurements,
options,
part,
}) {

// Construct the quarter neck opening
let tweak = 1
let target = (measurements.head _ options.neckRatio) /4
let delta
do {
points.right = new Point(
tweak _ measurements.head / 10,
0
)
points.bottom = new Point(
0,
tweak \* measurements.head / 12
)

points.rightCp1 = points.right.shift(
90,
points.bottom.dy(points.right) / 2
)
points.bottomCp2 = points.bottom.shift(
0,
points.bottom.dx(points.right) / 2
)

paths.quarterNeck = new Path()
.move(points.right)
.curve(
points.rightCp1,
points.bottomCp2,
points.bottom
)
.hide()

delta = paths.quarterNeck.length() - target
if (delta > 0) tweak = tweak _ 0.99
else tweak = tweak _ 1.02
} while (Math.abs(delta) > 1)

/\*

- Construct the complete neck opening
\*/
points.rightCp2 = points.rightCp1.flipY()
points.bottomCp1 = points.bottomCp2.flipX()
points.left = points.right.flipX()
points.leftCp1 = points.rightCp2.flipX()
points.leftCp2 = points.rightCp1.flipX()
points.top = points.bottom.flipY()
points.topCp1 = points.bottomCp2.flipY()
points.topCp2 = points.bottomCp1.flipY()

paths.neck = new Path()
.move(points.top)
.curve(points.topCp2, points.leftCp1, points.left)
.curve(points.leftCp2, points.bottomCp1, points.bottom)
.curve(points.bottomCp2, points.rightCp1, points.right)
.curve(points.rightCp2, points.topCp1, points.top)
.close()
.addClass('fabric')

/\*

- Drawing the bib outline
_/
const width = measurements.head _ options.widthRatio
const length = measurements.head \* options.lengthRatio

points.topLeft = new Point(
width / -2,
points.top.y - (width / 2 - points.right.x)
)
points.topRight = points.topLeft.shift(0, width)
points.bottomLeft = points.topLeft.shift(-90, length)
points.bottomRight = points.topRight.shift(-90, length)

paths.rect = new Path()
.move(points.topLeft)
.line(points.bottomLeft)
.line(points.bottomRight)
.line(points.topRight)
.line(points.topLeft)
.close()
.addClass('fabric')

return part
}

Note how the neck opening is the same distance from the left, right, and top edge

First thing we did was create the width and length variables to save ourselves some typing:

const width = measurements.head * options.widthRatio
const length = measurements.head * options.lengthRatio

Both the length and width of our bib are a factor of the head circumference. This way, our bib size will adapt to the size of the baby, and the user can tweak the length and width by playing with the options we added to the pattern.

Once we have our variables, we're adding some new points, and a second path called rect.

points.topLeft = new Point(width / -2, points.top.y - (width / 2 - points.right.x))
points.topRight = points.topLeft.shift(0, width)
points.bottomLeft = points.topLeft.shift(-90, length)
points.bottomRight = points.topRight.shift(-90, length)

paths.rect = new Path()
.move(points.topLeft)
.line(points.bottomLeft)
.line(points.bottomRight)
.line(points.topRight)
.line(points.topLeft)
.close()
.addClass('fabric')

We're calculating the topLeft point so that the top edge of our bib and the sides are equidistant from the neck opening.

We didn't have to do that. But it looks nicely balanced this way.